

## 2023 Spring Provider Symposium

Artificial Intelligence in Healthcare: Improving Health Outcomes and Advancing Equity with New Tools

Friday, May 19, 2023
Virtual Conference





## Clinical Stratification with Machine Learning

Sule Baptiste

May 19th, 2023



1 5/18/23

© 2023 HF Management Services, LLC

Maternal-fetal Health Program

Maternal-fetal Health: "What are we trying to solve for?"



Supporting women from pre to post pregnancy journey to reach full term via Clinical and Social Support

#### Goals for Healthfirst Cares (Launch)

Identify more pregnancies in first trimester and connect to providers (PCP, OBGYN)

Reduce preterm delivery and low birth weight babies

Increase prenatal visits



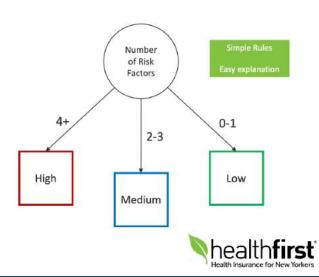


## **Baseline Approach: Rules Based Classification**

Clinical decision trees and healthcare related business rules

- Risk Factors:
  - Previous preterm labor, shortened cervix, high blood pressure, multiple gestations (or prior), preeclampsia, fetal development abnormalities, placenta previa, diabetes (T1 or T2), gestational diabetes, blood clotting problems, and substance use
- Maternal Risk Stratification
  - High: 4+ Risk Factors [OR] Previous
     Preterm Labor, Shortened Cervix, High
     Blood Pressure, Multiple Gestations
  - Medium: 2 3 Risk Factors
  - Low: 1 or less Risk Factors

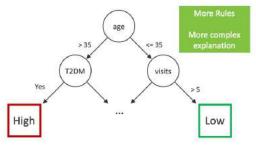
#### Individual Decision Tree



### Machine Learning (ML) Approach: Gradient Boosted Trees

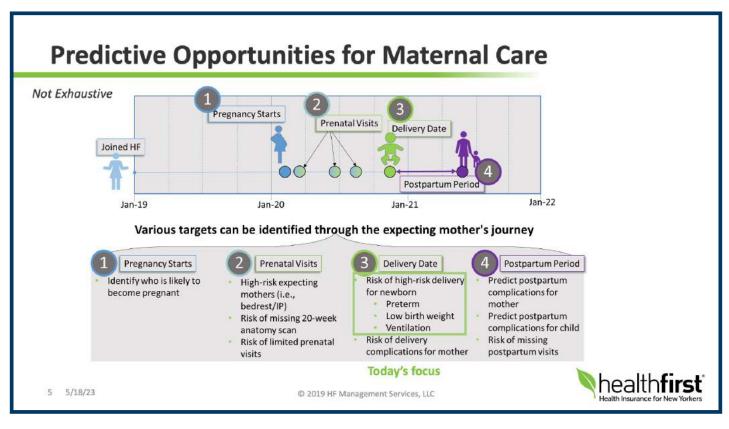
- Natural extension of rules-based model
- Aggregates many individual decision trees
- Model learns optimal thresholds using algorithm to determine member classification
  - Will member experience pregnancy complication?
- Can accommodate 100's of rules

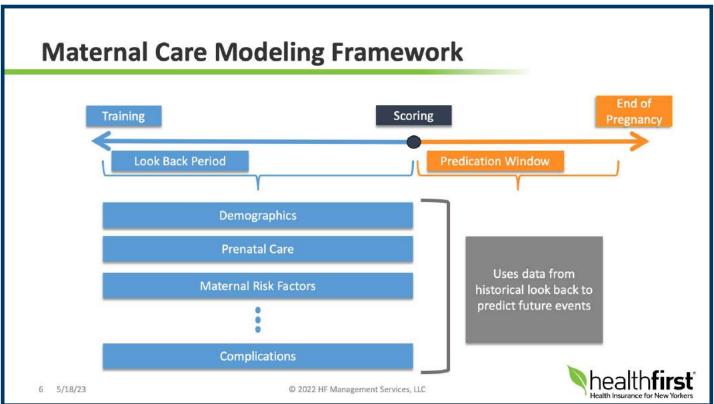
#### **Individual Decision Tree Example**













## **General Model Inputs**

Member Information



#### Demographics

Member demographics, location, race and ethnicity



#### Health plan history

Members HF enrollment history and tenure



#### Social Vulnerabilities

Homelessness, socioeconomics, transportation



**Customer Service Interactions** 

Inbound calls to call center

5/18/23

#### Member Health Information



#### Physical health diagnosis

Physical health diagnosis history of each member



#### Behavioral health diagnosis

Mental health and substance use diagnosis history



#### Procedure & DME History

History of prior procedures and



#### Rx utilization

Rx fill history and med-adherence



#### **Longitudinal Health**

Time since first observed diagnosis

© 2023 HF Management Services, LLC

## Healthcare Utilizations patterns



#### PCP and specialist visits

History of PCP connectedness and specialist visits



#### **Outpatient utilization**

Telehealth, therapy, drug counseling, office visits, PCP visits



#### **Admissions and Readmission**

History of inpatient admissions and hospitalizations



#### Prior ER and UC visits

History of prior ER and Urgent Care visits



## **Specific Model Inputs**





#### Time Since Last Pregnancy

Less time can add risk



#### UTI/STDs

Complicating factors during pregnancy



#### **Prenatal Care**

Frequency of prenatal visits

+ known risk factors from rules-based approach

5/18/23

#### **Condition-Specific Drugs**

- Anti-diabetics
- Anti-coagulants
- · Anti-hypertensives
- Beta Blockers

#### **First Visit Diagnosis**

- Prior Preterm Labor
- Mental Disorders Complicating Pregnancy
- Benign Neoplasms
- Comorbidities

© 2023 HF Management Services, LLC

#### **Other Factors**



#### Cardiovascular Conditions

Incidence of heart or vascular diseases, illnesses or conditions



#### **Fluid Disorders**

If present within HIE



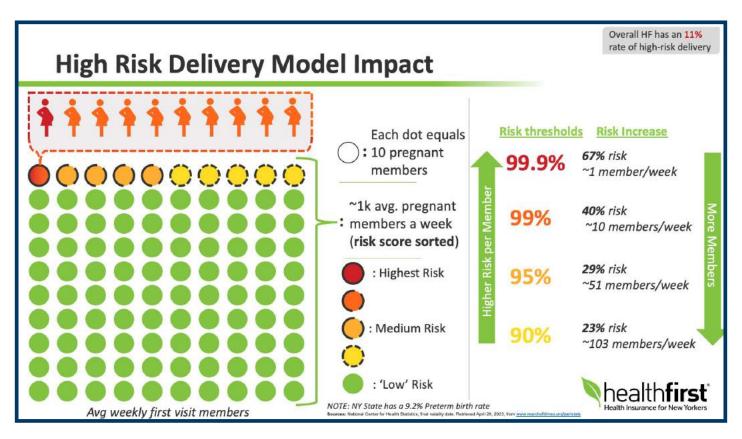
#### Weight Status

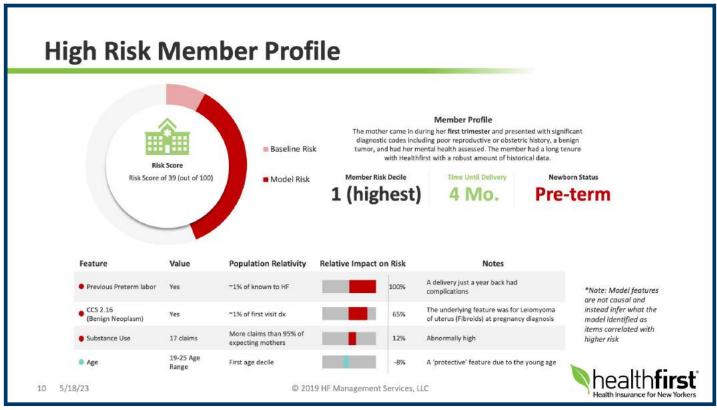
Indications of being overweight or obese proxied via claims

Over 300 data points in total

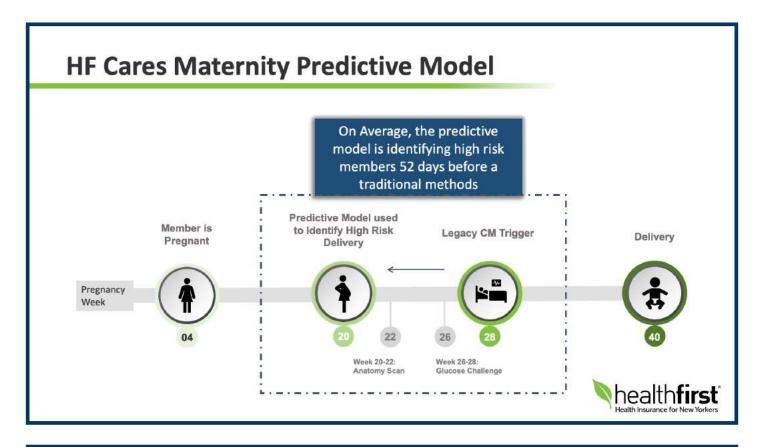












#### **Member Example** Staff feedback: **Member Details** HF Cares identified member during 1st Trimester "Receiving the Gestational diabetic insulin dependent Medical Dx Morbid obesity Healthfirst OB Chronic hypertension members earlier in the pregnancy is Two prior pregnancies delivered preterm d/t gestational diabetes & required NICU admissions making a huge Members issues/concerns Elevated blood glucose Husband and two children overweight as advised by medical providers impact!" Educated member on current medications, medical issues, & strategies to have a better overall experience with this pregnancy Shared the statistic 50% of the woman with gestational diabetes will have type 2 Diabetes within 5 years. After member informed, she stated "I am determined not to be part of that group!" Member stated she was very familiar with what to expect and a far as her diet she had "heard it all before." Even so, continued to collaborated w/ member and advised since she does the shopping and cooking, she really could turn things around for the whole family. When a diet recall was completed, she did not recognize the volume of How did the HF Cares team intervene? Member was offered a consult w/ a HF nutritionist and she accepted. She was given information on how her food "Having the majority choices affected her diabetes and HTN of the pregnancy to The member really took the info to heart and with regular calls and support changed her diet Members providers impressed & she was receiving positive reinforcement at each visit work with members She was proud to share her improved glucose levels & blood pressure during each call allows us to affect This was the first pregnancy she wasn't being told her baby was measuring too big and being shamed because of more outcomes for her poor glucose control our members and their families" Member discontinued insulin prior to delivery Member delivered full term w/o NICU **Outcomes of interventions** Member lost 50 lbs. during the pregnancy due to the healthy choices (with provider approval) Members husband lost 40 lbs. and her children started accepting healthier food choices



## **Clinical Stratification**

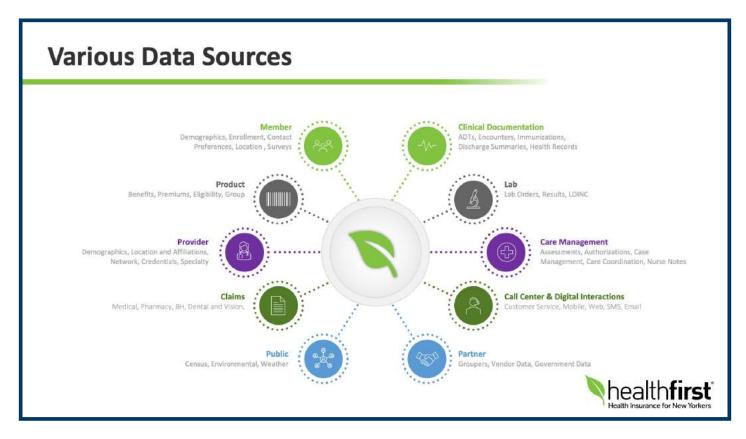
13 5/18/23

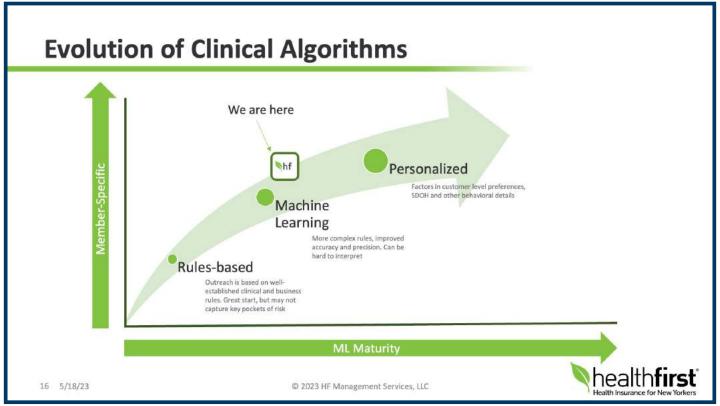
© 2023 HF Management Services, LLC



#### **Machine Learning System Overview** Data Outreach Results 0 **New Data** Score Model Feature Engineering **Evaluate Model** 1 Preprocessing 0 Train Model **Training Data** healthfirst 14 5/18/23 © 2022 HF Management Services, LLC









## **Possible Predictive Inputs into Clinical Stratification**

Clinical stratification framework can vary based on population needs, access to data, and clinical programming

#### **Physical Health**

Presence and severity of physical conditions based on claims, authorizations, and assessment data

#### **Behavioral Health**

Presence and severity of mental health or substance use related illness on claims, authorizations, and assessment data

#### Access to Care

Connectedness to PCP and specialists (utilization and access measurements)



#### **Medication Management**

Medication adherence and compliance, medication therapy management (MTM), polypharmacy

#### Social Determinants of Health

Housing instability, lack of transportation, food insecurity, etc

#### **Clinical Cost Trajectory**

Changes in medical, pharmacy or total cost of care that may indicate health needs

100s of Predictive Models



#### **Data-Informed Outreaches**



18 5/18/23

© 2022 HF Management Services, LLC





## **Limitations & Challenges**

Data

**Bias & Fairness** 

Explainability & Interpretability

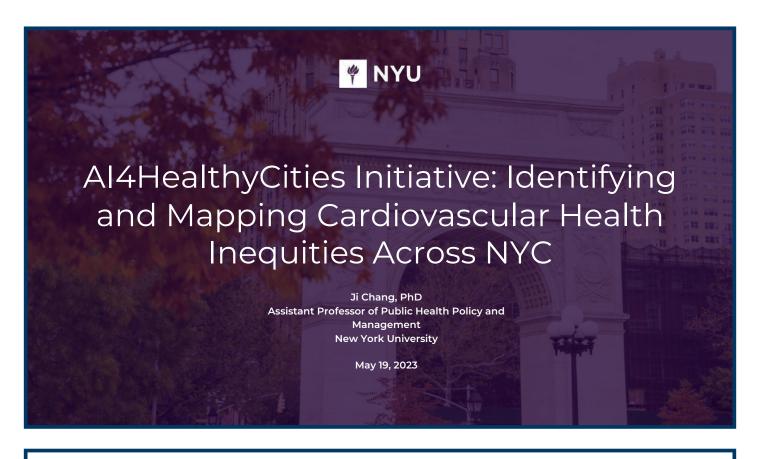
Actionability & Clinical Program Design



19 5/18/23

© 2023 HF Management Services, LLC





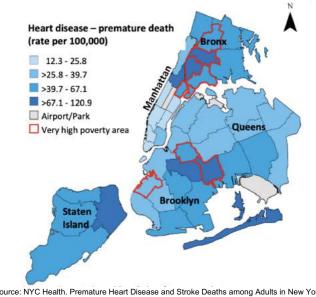
# Partnerships in data rich cities to decipher health inequities





## **Health (In)Equity in NYC**

- Brownsville, Brooklyn: median income was \$32,940 in 2019 vs. Upper East Side, Manhattan: median income was \$141,090 in 2019
- A baby born to a family that lives in the Upper East Side will live 11 years longer than a baby born to a family in Brownsville



Source: NYC Health. Premature Heart Disease and Stroke Deaths among Adults in New York

## **Key Question**

How can we bring together data from health care, public health, and other health-influencing sectors to obtain new insights into factors that influence cardiovascular health and reduce health inequities in New York City



## **Phase 1: Landscape Analysis**

Scoping Review Data Compendium Stakeholder Interviews

What has been published in the literature about the use of data to address cardiovascular disease and SDOH?

What data are available about the social determinants of health in NYC and at what geographic level? How do key public health stakeholders use SDOH data and what data-driven solutions can address health equity?

## **Scoping Review Results**

4,110 abstracts screened, 51 studies included

Most common SDOH domains were healthcare access and quality and neighborhood/built environment

Both electronic health records (patient-level) and neighborhood data (population-level) were commonly used, but not often integrated

Risk scores were commonly used but almost exclusively relied on electronic health records data





## **Data Compendium**

- 57 data sources related to SDOH found through search of peer reviewed and grey literature and databases of federal, state, city agencies.
- Categorized by level (county, zip, neighborhood, census tract, census block) and by social determinant domain
- Identified frequency of updates and geographic availability



## **Key Findings**

Wealth of data available on all SDOH domains





Participants: 11 key stakeholders from across the NYC public health landscape, including current and former executives and senior leaders from city and state health departments, insurance plans, community-based organizations, and hospitals

**Topics**: How SDOH data are currently being used; what data driven tools are useful to address health equity; challenges to using and developing such tools

## **Key Findings**

 Stakeholders used SDOH data directly collected from patients (ICD-10 z-codes or organization specific screening tools) as well as locally collected data (i.e. NYC Community Health Survey)

#### However...

- Reliance on patient self-reporting of SDOH was laborious and time consuming, and sometimes error prone.
- Need for integrated data across data systems
- Area-level measures to account for social-risk is promising, but should be multi-dimensional, updated frequently, and granular to guide decisions



# Landscape Analysis Takeaways

- Currently available tools rely on both patient-level or neighborhood-level data, but are not often integrated.
- Wealth of data exists on SDOH both within and outside of the health care sector, but more specific tools needed to meaningfully connect them.



## **Phase 2: Mapping and Predicting**

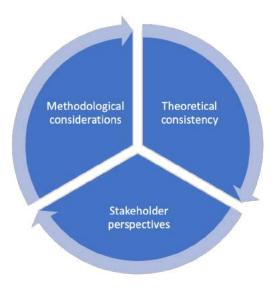
Need for tools utilizing neighborhood-level SDOH data at granular level Develop a multi-dimensional zipcode-level social risk score and tool for CVD health in NYC

Value of combining clinical and non-clinical data for CVD
Risk Prediction

Use EHR patient data from NYC H+H to validate and test neighborhood risk-score and predict individual outcomes and needs using AI models



## A Balanced Framework for Developing Composite SDOH Risk Scores



## **Challenges in Creating Area Level Risk Scores**

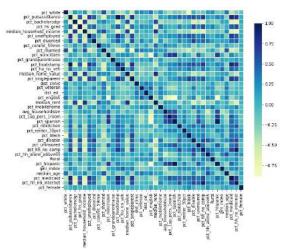
- Data captured at varying geographic levels
  - → structured process of linking data
- Variance in data structure, access, availability, completeness
  - → data scraping, cleaning and access requests
- Multitude of measures available for similar concepts
- → dimensionality reduction via statistics and machine learning
- Need for integrating local perspectives and theory
  - → stakeholder interviews and literature review

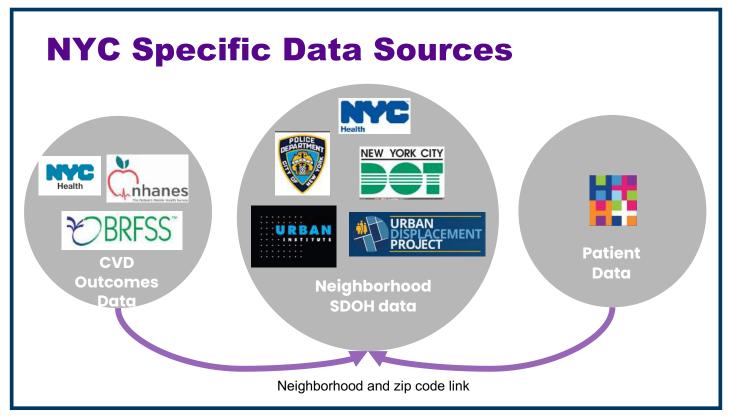




# Dimensionality Reduction using National Data

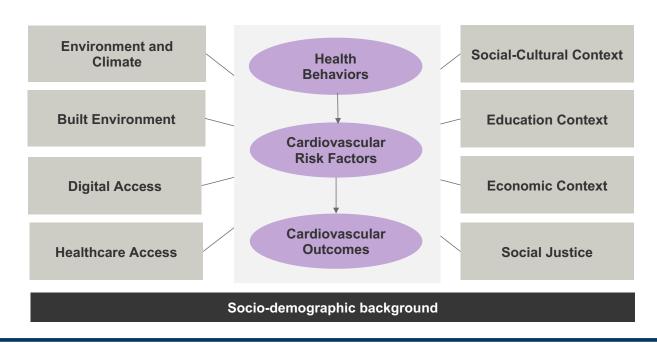
- Generalized Estimating Equations for Longitudinal Analysis
- Cross-Sectional Analysis on change data
- Machine Learning (Random Forest Algorithm) for cross sectional data







## **Determinants of CVD Health**



## **Localized CVD Risk Index (In Draft)**

| Environment and Climate | Built<br>Environment  | Digital<br>Access | Healthcare<br>Access | Socio-cultural context | Education     | Economic         | Social<br>Justice  |
|-------------------------|-----------------------|-------------------|----------------------|------------------------|---------------|------------------|--------------------|
| Fine particles          | Tobacco<br>licenses   | % internet        | uninsured            | Elderly living alone   | % bachelor    | Household income | redlining          |
| Nitrogen<br>Dioxide     | Prop park             | % computer        | Distance to ED       | No English             | % high school | unemployed       | Gentrification     |
|                         | % housing w/>1 person |                   |                      |                        |               | Gini index       | Racial segregation |
|                         |                       |                   |                      |                        |               |                  |                    |
|                         |                       |                   |                      |                        |               |                  | crime              |
|                         |                       |                   |                      |                        |               |                  | crime              |
| Demograph               | ic population         | variables         |                      |                        |               |                  | crime  NYC data    |





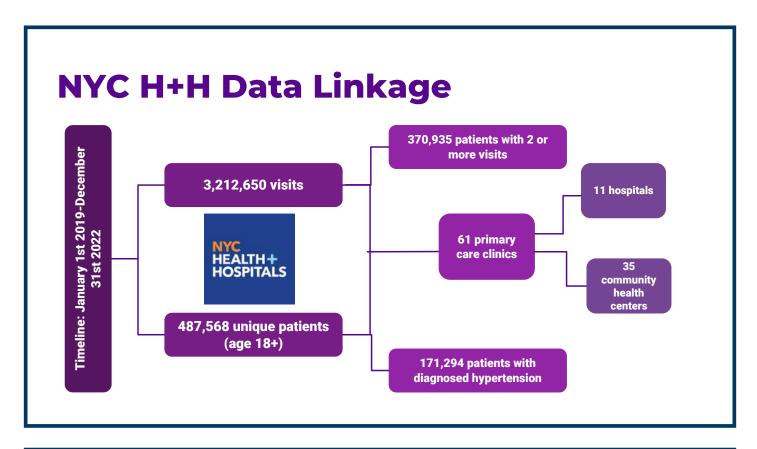
## **Phase 2: Mapping and Predicting**

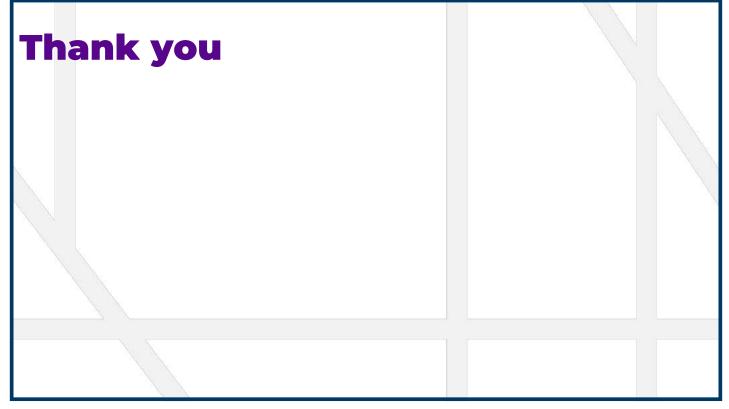
Need for tools utilizing neighborhood-level SDOH data at granular level Develop a multi-dimensional zipcode-level social risk score and tool for CVD health in NYC

Value of combining clinical and non-clinical data for CVD Risk Prediction

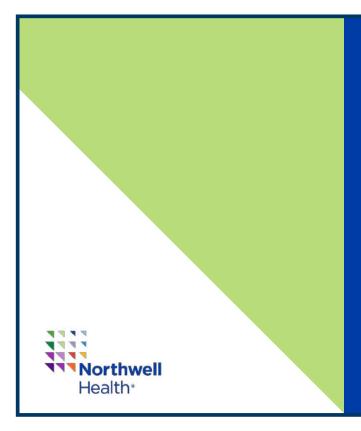
Use EHR patient data from NYC H+H to validate and test neighborhood risk-score and predict individual outcomes and needs using AI models











# APPLYING CLINICAL AI TO REDUCE READMISSIONS BY OVER 20%

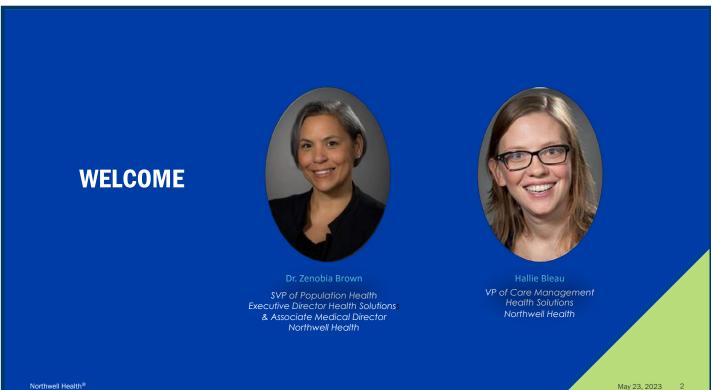
Zenobia Brown, MD, MPH

SVP of Population Health, Executive Director Health Solutions & Associate Medical Director for Northwell Health

May 23, 2023

Hallie Bleau, ACNP-BC, MBA

VP, Care Management





## **CONFLICT OF INTEREST**

Zenobia Brown, MD, MPH Hallie Bleau, ACNP-BC, MBA

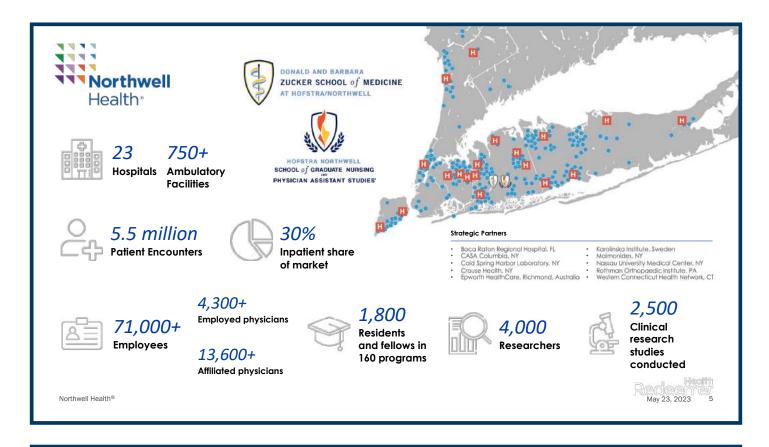
Have no real or apparent conflicts of interest to report.

Northwell Health®



- NORTHWELL HEALTH OVERVIEW
- A READMISSION PROBLEM TO SOLVE
- ENHANCING CARE MANAGEMENT WITH AI
- DESCRIPTION OF AI TOOL
- METHODOLOGY RESULTS

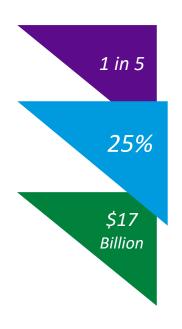








## ISSUES IN TODAY'S CARE DELIVERY



1 in 5 patients are readmitted within 30 days of discharge in the United States

25% of all readmissions that occur are preventable

Preventable readmissions have cost Medicare \$17 billion annually

Northwell Health®

Agency for Healthcare Research and Quality. Statistical Brief #172, April 2014 Available from: http://www.hcupus.ahrq.gov/reports/statbriefs/sb172-Conditions-Readmissions-Payer.pdf (Accessed December 9, 2014)

## A READMISSION PROBLEM: SOLUTIONS ACROSS MULTIPLE INTERVENTIONS

In 2016, CMS released the Overall Hospital Quality Star Ratings, rating each qualifying acute care hospital with a Star rating from 1 to 5 stars. Readmissions account for 22% of the total Star Rating.

In 2017, of Northwell Health's 11 Hospitals, only 5 met or exceeded the national average of 3 stars with an average Readmission Group Score of -1.39.

In 2022, 11 of Northwell Health's 12 hospitals are meeting or exceeding national average of 3 stars and has moved closer to the national average with an average Readmission Group Score of -0.60.

| Hospital                 | 2017 Readmission<br>Group Score<br>(Q3 2012 – Q2 2015) | <b>2017 Quality Star</b><br><b>Rating</b><br>(Q3 2012 – Q2 2015) | 2022 Readmission<br>Group Score<br>(Q3 2017– Q4 2019) | <b>2022 Quality Star</b><br><b>Rating</b><br>(Q3 2017 – Q4 2019) |
|--------------------------|--------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|
| National Average         | -0.03                                                  | ***                                                              |                                                       | ***                                                              |
| Site A                   | -0.93                                                  | **                                                               | -0.91 ↑                                               | **                                                               |
| Site B                   | -2.49                                                  | *                                                                | -1.02↑                                                | ***                                                              |
| Site C                   | -1.18                                                  | ***                                                              | - 0.94 ↑                                              | ***                                                              |
| Site D                   | -0.67                                                  | **                                                               | -0.75↓                                                | ***                                                              |
| Site E                   | -2.63                                                  | *                                                                | -1.27 ↑                                               | ***                                                              |
| Site F                   | NA                                                     | ***                                                              | -0.26                                                 | ****                                                             |
| Site G                   | -1.32                                                  | **                                                               | -0.29 ↑                                               | ****                                                             |
| Site H                   | -1.19                                                  | ***                                                              | -0.75↑                                                | ****                                                             |
| Site I                   | -1.72                                                  | ***                                                              | -0.12↑                                                | ****                                                             |
| Site J                   | -1.19                                                  | **                                                               | -0.95↑                                                | ****                                                             |
| Site K                   | -1.05                                                  | **                                                               | 0.82↑                                                 | ****                                                             |
| Site L                   | -0.94                                                  | ***                                                              | -0.48↑                                                | ****                                                             |
| All Northwell<br>Average | -1.39                                                  | 2.3                                                              | -0.60↑                                                | 3.6                                                              |



#### READMISSION REDUCTION STRATEGY ACROSS CARE SETTINGS

The Transitional Care Management Program is integrated in all Northwell Health acute care hospitals and uses a team-based model to support patients' recovery after a hospitalization. The program's goals are to maximize days at home, reduce readmissions and decrease the total cost of care by connecting with patients through follow up phone calls and home visits.

- Enrollment in hospital or post discharge
- Access to 24/7 Call Center
- Enroll in chat bot

#### Engagement



High Risk patients receive a home visit Post Acute analytical

platform used for SNF LOS management





Real-Time Notification for ED Presentations

Hospital team takes action to meet patient in the ED

**ED Action Team** 

#### 24hr D/C Every Patient called within

- 24hrs of discharge 7 days a Discharge Instructions Reviewed
- Medication Reconciliation Completed Verify provider f/u appointments



#### Community Connections

- Community Based Care Mgmt Behavioral Health Care
- Mgmt Health Home
- Healthy Living Tobacco Cessation



Homecare Coordination Northwell Health®

**ACHIEVING THE HARDEST YARDS: CAN** AI BE INTEGRATED **EFFECTIVELY INTO A READMISSION REDUCTION STRATEGY?** 





Identifies at-risk patients across the population

Not just those who are known to be currently high-risk





#### Determines the contributing factors (clinical & non-clinical) driving the risk

- Clinical 10%
- Genomics 30%
- Exogenous 60%



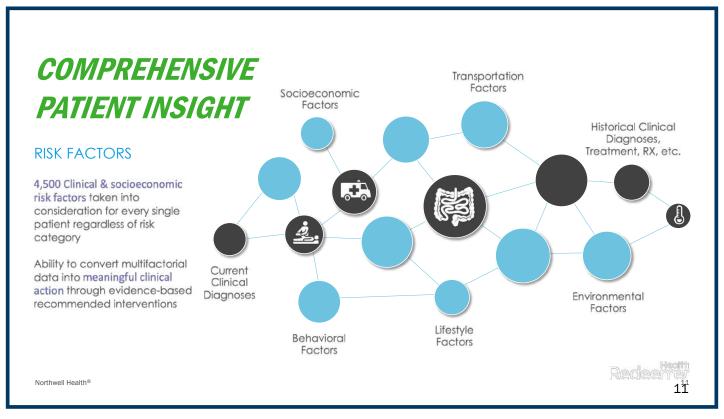


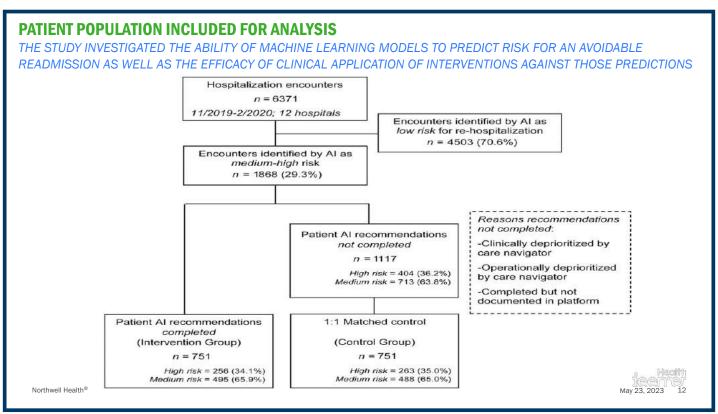
#### Delivers the recommendations

that will most effectively improve outcomes and drive engagement

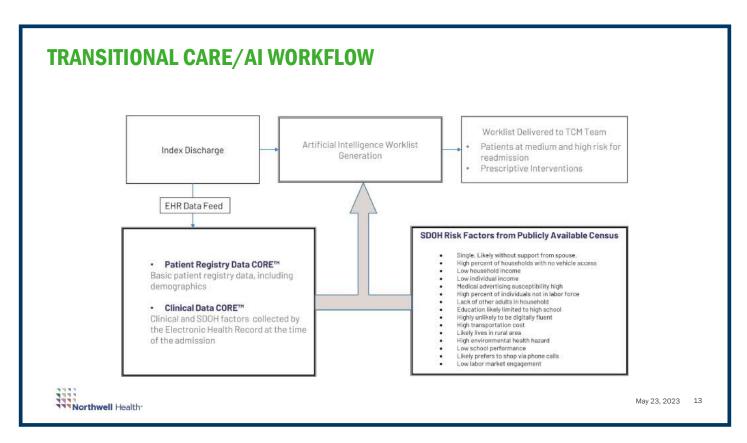


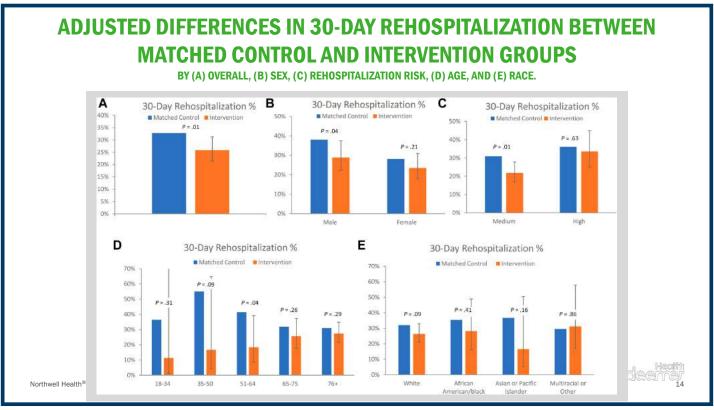














### **RESULTS: IT WORKED**

THE RESULTS WERE FOUND TO BE STATISTICALLY SIGNIFICANT WITH FISCHER'S 2X2 EXACT TEST WITH A P-VALUE OF <0.05.



#### Identification Of High Risk Patients

The AI model is identified correctly patients who are at the highest risk for readmission.

Al identified 29.8% of the population as high risk



#### Enhanced Readmission Reduction: High and medium Risk

Those patients who were identified as high and medium risk and were intervened on by the care transition team had a lower readmission rate of 25.8% as compared to those patients who were not intervened on with a readmission rate of 32.8%.

The readmission rate was lower by 21% in the patients who had the targeted interventions identified by the Al model implemented.

Northwell Health®



## **FUTURE QUESTIONS:**



integration?





Are there aspects of our current model/ operations that could be abandoned based on high risk case finding fidelity?



Do we have the right financial and models that fully optimize the ROI?





Dr. Zenobia Brown - zbrown2@northwell.edu

**THANK YOU!** 

Hallie Bleau - hbleau@northwell.edu



Northwell Health®

## **QUESTIONS**

Redeemer



